CMA_ES_Optimization¶
Purpose¶
The purpose of the driver is to identify a parameter vector that minimizes the value of an objective function . The search domain is bounded by box constraints for and may be subject to several constraints such that only if (see create_study()
).
The driver uses the heuristic CMA-ES method to search globally for a minimum of the objective function. We recommend to use Bayesian optimization to search globally for a minimum. Only if the evaluation times of the objective function are very short (smaller than 1-3 seconds) it can be beneficial to use CMA-ES.
The implementation of the driver is based on the open source implementation if CyberAgent, Inc. (see https://github.com/CyberAgentAILab/cmaes).
Usage Example¶
import sys,os
import numpy as np
import time
sys.path.append(os.path.join(os.getenv('JCMROOT'), 'ThirdPartySupport', 'Python'))
import jcmwave
client = jcmwave.optimizer.client()
# Definition of the search domain
domain = [
{'name': 'x1', 'type': 'continuous', 'domain': (-1.5,1.5)},
{'name': 'x2', 'type': 'continuous', 'domain': (-1.5,1.5)},
{'name': 'radius', 'type': 'fixed', 'domain': 2},
]
# Definition of a constraint on the search domain
constraints = [
{'name': 'circle', 'constraint': 'sqrt(x1^2 + x2^2) - radius'}
]
# Creation of the study object with study_id 'CMA_ES_Optimization_example'
study = client.create_study(domain=domain, constraints=constraints,
driver="CMA_ES_Optimization",
name="CMA_ES_Optimization example",
study_id='CMA_ES_Optimization_example')
# Definition of a simple analytic objective function.
# Typically, the objective value is derived from a FEM simulation
# using jcmwave.solve(...)
def objective(**kwargs):
time.sleep(2) # makes objective expensive
observation = study.new_observation()
x1,x2 = kwargs['x1'], kwargs['x2']
observation.add(10*2
+ (x1**2-10*np.cos(2*np.pi*x1))
+ (x2**2-10*np.cos(2*np.pi*x2))
)
return observation
# Set study parameters
study.set_parameters(max_iter=80, num_parallel=2)
# Run the minimization
study.set_objective(objective)
study.run()
info = study.info()
print('Minimum value {:.3f} found for:'.format(info['min_objective']))
for param,value in info['min_params'].items():
if param == 'x4': print(' {}={}'.format(param,value))
else: print(' {}={:.3f}'.format(param,value))
Parameters¶
The following parameters can be set by calling, e.g.
study.set_parameters(example_parameter1 = [1,2,3], example_parameter2 = True)
mean0 (list): | Initial mean vector of multi-variate gaussian distributions. If not set, a random initial vector is chosen. (default: None) |
---|
sigma0 (float): | Initial standard deviation. The problem is internally rescaled such that all variables lie in the interval [0,1]. The standard deviation is defined on these rescaled variables. (default: 0.4) |
---|
population_size (int): | |
---|---|
The population size. (default: None) |
max_iter (int): | Maximum number of evaluations of the objective function (default: inf) |
---|
max_time (int): | Maximum run time in seconds (default: inf) |
---|
num_parallel (int): | |
---|---|
Number of parallel observations of the objective function (default: 1) |
eps (float): | Stopping criterium. Minimum distance in the parameter space to the currently known minimum (default: 0.0) |
---|
min_val (float): | |
---|---|
Stopping criterium. Minimum value of the objective function (default: -inf) |