CMA_ES_Optimization

Purpose

The purpose of the driver is to identify a parameter vector \mathbf{p}\in\mathcal{X}\subset\mathbb{R}^d that minimizes the value of an objective function f_\text{objective}: \mathcal{X} \rightarrow \mathbb{R}. The search domain \mathcal{X} is bounded by box constraints l_i\leq p_i \leq u_i for 1\leq i\leq d and may be subject to several constraints c_j: \mathbb{R}^d \rightarrow \mathbb{R} such that \mathbf{p} \in \mathcal{X} only if c_j(\mathbf{p}) \leq 0 (see create_study()).

The driver uses the heuristic CMA-ES method to search globally for a minimum of the objective function. We recommend to use Bayesian optimization to search globally for a minimum. Only if the evaluation times of the objective function are very short (smaller than 1-3 seconds) it can be beneficial to use CMA-ES.

The implementation of the driver is based on the open source implementation if CyberAgent, Inc. (see https://github.com/CyberAgentAILab/cmaes).

Usage Example

import sys,os
import numpy as np
import time

sys.path.append(os.path.join(os.getenv('JCMROOT'), 'ThirdPartySupport', 'Python'))
import jcmwave
client = jcmwave.optimizer.client()


# Definition of the search domain
domain = [
    {'name': 'x1', 'type': 'continuous', 'domain': (-1.5,1.5)},
    {'name': 'x2', 'type': 'continuous', 'domain': (-1.5,1.5)},
    {'name': 'radius', 'type': 'fixed', 'domain': 2},
]

# Definition of a constraint on the search domain
constraints = [
    {'name': 'circle', 'constraint': 'sqrt(x1^2 + x2^2) - radius'}
]

# Creation of the study object with study_id 'CMA_ES_Optimization_example'
study = client.create_study(domain=domain, constraints=constraints,
                            driver="CMA_ES_Optimization",
                            name="CMA_ES_Optimization example",
                            study_id='CMA_ES_Optimization_example')

# Definition of a simple analytic objective function.
# Typically, the objective value is derived from a FEM simulation
# using jcmwave.solve(...)
def objective(**kwargs):
    time.sleep(2) # makes objective expensive
    observation = study.new_observation()
    x1,x2 = kwargs['x1'], kwargs['x2']
    observation.add(10*2
                + (x1**2-10*np.cos(2*np.pi*x1))
                + (x2**2-10*np.cos(2*np.pi*x2))
            )

    return observation

# Set study parameters
study.set_parameters(max_iter=80, num_parallel=2)

# Run the minimization
study.set_objective(objective)
study.run()

info = study.info()
print('Minimum value {:.3f} found for:'.format(info['min_objective']))
for param,value in info['min_params'].items():
    if param == 'x4': print('   {}={}'.format(param,value))
    else: print('   {}={:.3f}'.format(param,value))

Parameters

The following parameters can be set by calling, e.g.

study.set_parameters(example_parameter1 = [1,2,3], example_parameter2 = True)
mean0 (list):Initial mean vector of multi-variate gaussian distributions. If not set, a random initial vector is chosen. (default: None)
sigma0 (float):Initial standard deviation. The problem is internally rescaled such that all variables lie in the interval [0,1]. The standard deviation is defined on these rescaled variables. (default: 0.4)
population_size (int):
 The population size. (default: None)
max_iter (int):Maximum number of evaluations of the objective function (default: inf)
max_time (int):Maximum run time in seconds (default: inf)
num_parallel (int):
 Number of parallel observations of the objective function (default: 1)
eps (float):Stopping criterium. Minimum distance in the parameter space to the currently known minimum (default: 0.0)
min_val (float):
 Stopping criterium. Minimum value of the objective function (default: -inf)