ThermoOpticalCorrectionΒΆ

Type:section
Appearance:multiple

The thermo-optical correction describes the temperature (T) dependency of the relative permittivity in a linear sense near a specified temperature T_0:

\begin{eqnarray*}
\Delta \TField{\varepsilon}^{(\mathrm{rel})} & = & C \left(T-T_0 \right)
\end{eqnarray*}

C is the thermo-optical coefficient. It is a 3 \times 3 - matrix to cover anisotropic effects. The total relative permittivity is then given by

\begin{eqnarray*}
\TField{\varepsilon}^{(\mathrm{rel})} & =  \TField{\varepsilon}^{(\mathrm{rel})}_{T_0} + C \left(T-T_0 \right).
\end{eqnarray*}

For too large temperature differences the linear correction term may loose its validity. To prevent obscure relative permittivity definitions one may restrict the absolute value of the correction term by a threshold value \delta_{\max},

\begin{eqnarray*}
\Delta \TField{\varepsilon}^{(\mathrm{rel})}_{ij} & =  & \min \left ( \max \left ( \Delta \TField{\varepsilon}^{(\mathrm{rel})}_{ij}, -\delta_{\max} \right ), \delta_{\max} \right ).
\end{eqnarray*}

The JCM - syntax looks like this:

# define the relative permittivity with thermo-optical correction
RelPermittivity {
  # define temperature independent terms
  Constant = ...
  ...
  ThermoOpticalCorrection {
     T0 = ... # set correction free temperature
     C = ... # set thermo-optical coefficients
     CutOff .. # set threshold here

  }
}

Warning

Often, the thermo-optical coefficient is defined as a refractive index - temperature relation, \Delta n = \alpha (T-T_0).

In a linear sense both definitions are equivalent:

\begin{eqnarray*}
\TField{\varepsilon}^{(\mathrm{rel})} & = & (n_{T_0}+\Delta n)^2 =  (n_{T_0}+\alpha(T-T_0))^2\\
{ } & = & n_{T_0}^2 +2n_{T_0}\alpha(T-T_0)+\alpha^2 (T-T_0)^2 \\
{ } & \sim & \TField{\varepsilon}^{(\mathrm{rel})}_{T_0}+\underbrace{2 n_{T_0}\alpha}_{C}(T-T_0)
\end{eqnarray*}

The approximation in the last line is due to linearization.